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We have simulated a fluid of particles which carry a Heisenberg spin and interact via a Heisenberg-
like interaction. The fluid displays a magnetic order-disorder transition, which we studied by varying
the temperature at a fixed particle density. We located the transition and estimated critical expo-
nents by means of a finite-size scaling analysis. The exponents differ by a small but significant
amount from the ones for the lattice Heisenberg model.

PACS number(s): 61.20.Ja, 64.60.Fr, 75.50.Ww

I. INTRODUCTION

Heisenberg fluids have recently been studied in Monte
Carlo (MC) simulations by Lomba et al. [1] as simplified
models of ferrofluids. The simulations established the oc-
currence of a liquid-vapor transition as well as a magnetic
order-disorder transition in a ferromagnetic Heisenberg
fluid [1]. Simulations of an antiferromagnetic Heisenberg
fluid have been carried out as well [2]. They found no evi-
dence for a liquid-vapor transition; however, a transition
from a disordered phase to a phase with antiferromag-
netic ordering (at least at a local scale) was observed.
Throughout this paper we will restrict ourselves to the
ferromagnetic case [1].

The simulations of Lomba et al. aimed at mapping
out the phase diagram of the ferromagnetic Heisenberg
fluid and focused on the interplay between the magnetic
and the liquid-vapor transitions. They report evidence
that a line of continuous magnetic order-disorder transi-
tions ends at a first-order liquid-vapor line in a critical
end point. The phase diagram has also been studied by
means of the mean spherical approximation [3], mean
field theory [4], and density-functional methods [5].

Since no finite-size effects have been accounted for in
the simulations of Lomba et al., the location of the tran-
sition temperature of the magnetic order-disorder tran-
sition is rather crude. The magnetization of a 500 par-
ticle system was recorded as a function of temperature
(at fixed density) and the transition temperature was
taken to be the temperature at which the magnetiza-
tion was approximately 0.5. Similarly, the liquid-vapor
coexistence densities were determined by Gibbs ensem-
ble Monte Carlo (GEMC) calculations for a 500 parti-
cle system and no finite-size analysis was carried out.
Bearing also in mind that the critical point cannot be
approached closely with the GEMC method, it is likely
that the simulation results in [1] are of insufficient quality
to determine how the magnetic order-disorder line joins
the liquid-vapor line.

Apart from the interplay between the magnetic order-
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disorder transition and the liquid-vapor transition, one
can study the magnetic transition itself. In particular,
one can question whether the magnetic transition in the
Heisenberg fluid is in the same universality class as the
transition in the lattice Heisenberg model. The Heisen-
berg fluid resembles a Heisenberg lattice model with an
annealed site dilution [6]. A fixed particle density in the
fluid corresponds to a fixed degree of dilution in the lat-
tice. To the best of our knowledge, little is known about
lattice models with a fixed density of annealed diluted
sites. Quenched site dilution is predicted not to change
the universality class of the lattice Heisenberg model
[7,8]. Annealed bond dilution is thought to change crit-
ical exponents according to Fisher renormalization [6,9].
The Blume-Capel model is an example of a model (the
Ising model) with an annealed site dilution. The density
of annealed sites is, however, not fixed but can fluctuate
around an average that is controlled by an external field
[10,11].

A comparison of our results with those for the undi-
luted lattice Heisenberg model is facilitated by three re-
cent MC studies of the undiluted lattice model [12-14].
They give accurate results for critical exponents and
other critical parameters and are in excellent agreement
with each other.

In this work we aim to carry out accurate simulations
of the magnetic order-disorder transition in a Heisenberg
fluid. We do not study the first-order liquid-vapor line
or the way in which the two transitions are joined. Fol-
lowing Lomba et al. we vary the temperature at a fixed
density. However, unlike Lomba et al. we truncate the
particle potential at a fixed distance in all simulations
and we use different system sizes to carry out a finite-
size scaling (FSS) analysis. As a result, the accuracy is
much improved and even permits us to estimate critical
exponents.

The paper is organized as follows. Section II describes
the model and technical aspects of the simulations. Re-
sults are given in Secs. III and IV. Conclusions are given
in Sec. V. A short version of this paper has been pre-
sented elsewhere [15].
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II. SIMULATIONS

We perform simulations of the three-dimensional
Heisenberg fluid in the canonical ensemble. The parti-
cles are enclosed in a cubic box with periodic boundary
conditions. The particles interact with the potential

0, Tij; < O
¢(7_‘},7_"j,6_"i,§'j) = —J(’l"ij)gi . gj, o <1< 2.50 (1)
0, Tij > 2.50

where ¢(7;,7j,5;,5;) denotes the potential between a
particle ¢ with position 7; and spin §; and a particle
J with position 7; and spin §;. The spins are Heisen-
berg spins, i.e., each spin §; is a three-dimensional vector
of unit length. The hard-core repulsion at distances r;;
(rij = |7; —7;|) smaller than o prohibits these interparti-
cle distances while two particles further than 2.50 away
from each other do not interact. The Heisenberg-like in-
teraction at distances 7;; in between has a ferromagnetic,
Yukawa-type coupling constant:

J(r)zegexp{r;a} (2)

where ¢ sets the energy scale of the interaction. This
potential is the same as that used in Ref. [1] except that
we cut it at a distance 2.50.

We vary the temperature 7' in our simulations while
keeping the density fixed. We do this for three densities
n: n = 04, n = 0.6, and n = 0.7 (all densities are
expressed in units of 0~3). The systems have a number
of particles N ranging from N = 108 to N = 1372 (for
n = 0.4 and n = 0.7) or from N = 108 to N = 2916 (for
n = 0.6). All systems are listed in Tables I-III.

The simulations need to sample spin degrees and po-
sitional degrees of freedom. The positions were sampled

with a regular Metropolis scheme and the spin degrees
of freedom with the Wolff algorithm [16]. The applica-
tion of the Wolff algorithm to an off-lattice system is, as
far as we know, a novelty but constitutes a straightfor-
ward generalization of the lattice version. Two modifi-
cations must be made: (a) one should take as neighbor
particles of a particle ¢ all particles within a distance
of 2.50 of the particle 3; (b) one should recall that the
coupling constant J (2) is not a constant as in a lattice
with nearest-neighbor interactions but depends on the
distance 7;; between the neighboring particles 7 and j.
With these two modifications, the algorithm of Ref. [16]
applies also to our off-lattice system. Detailed balance
and ergodicity of the algorithm hold for the off-lattice
version for the same reasons as for the lattice version.

The sequence of system updates in the MC calculations
is as follows: two sweeps, in each of which we attempt to
move each particle once, are followed by the construction
of one Wolff cluster after which the Monte Carlo proceeds
with the next two sweeps. We chose the maximum posi-
tion displacement such that the acceptance ratio of the
trial moves was around 50%. The size of the Wolff cluster
around T, varied between 13-15 % of the total number
of particles N for N = 108 to 56 % for N = 1372 and
N = 2916. A system is typically followed for 10° sweeps
with the corresponding 0.5 x 106 Wolff updates. Precise
run lengths are given in Tables I-III.

After each sweep we measure the energy U of the sys-
tem; after each Wolff update we measure the magnetiza-
tion m, defined as

1
~ 2 5 3)
N =1

o
m =

In each simulation (carried out at a fixed N, n, and T
we calculate the average magnetization moments (mk)mc
m = |m|, k = 1,2,3,4, and the subscript mc stands for

TABLE 1. Simulated systems at the density n = 0.4. N is the number of particles in the system;
T is the temperature of the system; N, is the number of sweeps (in millions) in the simulation
(the number of Wolff updates is half the number of sweeps); (u) is the energy per particle averaged
over the simulation; the (m*) are the average magnetization moments (k = 1,2,3,4). The values
between parentheses are the errors on the last decimal.

N T Ns (u) (m) (m?) (m?) (m*)
108
108 1.9 1.2 -0.980(2) 0.4538(6) 0.2142(5) 0.1043(3) 0.0520(2)
108 1.95 1.2 -0.894(2) 0.4241(6) 0.1890(5) 0.0874(3) 0.0417(2)
108 2 1.2 -0.813(2) 0.3937(7) 0.1648(5) 0.0722(3) 0.0382(2)
108 2.05 1.2 -0.739(2) 0.3651(7) 0.1436(5) 0.0596(3) 0.0258(1)
256 1.9 1.08 -0.923(1) 0.3967(6) 0.1631(4) 0.0690(3) 0.0299(1)
256 1.95 1.08 -0.832(1) 0.3580(6) 0.1348(4) 0.0528(2) 0.0213(1)
256 2 1.26 -0.748(1) 0.3206(6) 0.1100(4) 0.0397(2) 0.01490(9)
256 2.05 1.08 -0.676(1) 0.2866(7) 0.0895(4) 0.0297(2) 0.01036(8)
500 1.9 0.984 -0.899(1) 0.3607(6) 0.1344(4) 0.0514(2) 0.0201(1)
500 1.95 0.96 -0.803(1) 0.3138(7) 0.1037(4) 0.0356(2) 0.01265(8)
500 2 0.96 -0.717(1) 0.2691(7) 0.0780(4) 0.0239(2) 0.00763(7)
500 2.05 0.98 -0.645(1) 0.2299(7) 0.0583(3) 0.0159(1) 0.00457(4)
1372 1.93 0.9 -0.8149(9) 0.2798(6) 0.0816(3) 0.0246(1) 0.00760(6)
1372 1.96 0.9 -0.7556(9) 0.2432(7) 0.0629(3) 0.0170(1) 0.00477(4)
1372 1.99 0.9 -0.703(1) 0.2089(7) 0.0475(3) 0.01146(9) 0.00290(3)
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TABLE II. As Table I for the density n = 0.6.

N T Ns (u) (m) (m?) (m?) (m*)
108
108 3.1 1.2 -1.247(3) 0.4341(6) 0.1971(5) 0.0926(3) 0.0448(2)
108 3.15 1.2 -1.163(3) 0.4147(7) 0.1811(5) 0.0822(3) 0.0385(2)
108 3.2 1.2 -1.089(3) 0.3965(6) 0.1668(5) 0.0733(3) 0.0333(2)
256 3.05 1 -1.229(2) 0.4037(6) 0.1684(4) 0.0721(3) 0.0316(1)
256 3.1 1.1 -1.130(2) 0.3778(6) 0.1488(4) 0.0605(2) 0.0253(1)
256 3.15 1.08 -1.042(2) 0.3532(6) 0.1314(4) 0.0508(2) 0.0202(1)
256 3.2 1.08 -0.954(2) 0.3270(7) 0.1139(4) 0.0416(2) 0.0157(1)
256 3.25 1 -0.879(2) 0.3043(7) 0.0997(4) 0.0345(2) 0.01243(9)
500 3.05 1 -1.179(2) 0.3724(6) 0.1425(4) 0.0558(2) 0.0223(1)
500 3.1 1.08 -1.072(2) 0.3412(6) 0.1210(4) 0.0442(2) 0.01654(9)
500 3.15 1.12 -0.979(2) 0.3112(7) 0.1020(4) 0.0348(2) 0.01224(8)
500 3.2 1.08 -0.889(2) 0.2801(7) 0.0840(4) 0.0265(2) 0.00868(7)
500 3.25 1 -0.813(2) 0.2531(7) 0.0697(3) 0.0204(1) 0.00623(5)
1372 3.13 1.12 -0.959(1) 0.2731(6) 0.0778(3) 0.0229(1) 0.00691(5)
1372 3.16 1.12 -0.898(2) 0.2487(6) 0.0654(3) 0.0179(1) 0.00508(4)
1372 3.19 1 -0.839(2) 0.2235(7) 0.0537(3) 0.0136(1) 0.00358(3)
2916 3.12 0.52 -0.952(2) 0.2515(8) 0.0655(4) 0.0175(1) 0.00480(5)
2916 3.15 0.48 -0.886(2) 0.220(1) 0.0512(4) 0.0124(1) 0.00309(4)
2916 3.18 0.48 -0.829(2) 0.1926(9) 0.0398(3) 0.0087(1) 0.00197(3)

microcanonical) as a function of the energy per particle
u of the system and we sample the energy distribution
P(u; T, N,n). With the multihistogram technique we can
then, for given NV and n, construct the energy distribution
for all temperatures T' around the temperatures {7;} at
which we performed the simulations [17]. The energy
distribution permits us to calculate, e.g., the canonical
averages (m”*) of the magnetization moments:

(m*)(T,N,n) = / du (m*)c(u; N,n) P(u; T, N,n)

(4)

[13]. Canonical averages (u*) of moments of the energy

and cross-correlations between energy and magnetization
such as (um) can be calculated in the same way.

Both the microcanonical averages and the energy dis-
tribution are calculated on a grid of 4096 bins in the
energy interval between u = —5 and u = 0 (all energies
are given in units of €). To check the effects of this dis-
cretization we averaged during each simulation 100 con-
secutive measurements of the energy and 50 consecutive
measurements of the magnetization moments and stored
those subaverages. The averages of the subaverages are
the canonical averages (u) and (m*) (k = 1,2,3,4) for
the N, n, and T at which we performed the simulation.
They are direct averages over the configurations that oc-
curred in the simulation run and are not affected by an

TABLE III. As Table I for the density n = 0.7.

N T Ns (u) (m) (m?) (m®) (m*)
108
108 3.75 1.2 -1.361(3) 0.4220(6) 0.1870(5) 0.0860(3) 0.0407(2)
108 3.8 1.2 -1.280(3) 0.4055(6) 0.1739(5) 0.0777(3) 0.0358(2)
108 3.85 1.2 -1.198(3) 0.3886(6) 0.1608(5) 0.0697(3) 0.0313(2)
108 3.9 1.2 -1.129(3) 0.3739(86) 0.1498(5) 0.0631(3) 0.0276(1)
256 3.75 1.6 -1.216(2) 0.3654(5) 0.1398(4) 0.0554(2) 0.0226(1)
256 3.8 1.6 -1.122(2) 0.3431(5) 0.1244(4) 0.0470(2) 0.01837(9)
256 3.85 1.6 -1.040(2) 0.3225(5) 0.1110(3) 0.0401(2) 0.01501(8)
256 3.9 1.6 -0.968(2) 0.3037(7) 0.0993(3) 0.0343(2) 0.01236(7)
500 3.75 1.26 -1.136(2) 0.3268(6) 0.1116(3) 0.0394(2) 0.01431(8)
500 3.8 1.26 -1.041(2) 0.3003(6) 0.0954(4) 0.0316(2) 0.01084(7)
500 3.85 1.26 -0.953(2) 0.2752(7) 0.0811(3) 0.0252(1) 0.00812(6)
500 3.9 1.26 -0.873(2) 0.2505(6) 0.0683(3) 0.0198(1) 0.00600(5)
729 3.75 1 -1.107(2) 0.3088(6) 0.0993(4) 0.0329(2) 0.01122(7)
729 3.8 1 -1.009(2) 0.2798(7) 0.0827(4) 0.0254(2) 0.00810(6)
729 3.85 1 -0.916(2) 0.2499(7) 0.0672(4) 0.0191(1) 0.00564(5)
1372 3.8 1 -0.961(2) 0.2445(7) 0.0633(3) 0.0171(1) 0.00479(5)
1372 3.83 1 -0.905(2) 0.2240(6) 0.0538(3) 0.0136(1) 0.00358(3)
1372 3.86 1 -0.855(2) 0.2050(7) 0.0457(3) 0.0109(1) 0.00270(3)
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intermediate discretization procedure. We checked that
they are within the error bars equal to the averages ob-
tained by the weighting procedure (4).

Error bars on the direct averages are obtained by av-
eraging the subaverages over larger blocks and calculat-
ing the standard deviation from the block averages. The
block size is increased until the standard deviation be-
comes independent of the block size. A block size of
32 (i.e., blocks of 3200 consecutive energy measurements
and 1600 consecutive measurements of the magnetization
moments) proved sufficiently large to obtain independent
averages of u and the mF.

For an error analysis of the results obtained from his-
togram reweighting, we averaged P over and stored it
after blocks of 2 x 10 sweeps. The microcanonical mag-
netization moments were averaged over and stored af-
ter blocks of 10* consecutive Wolff updates. A typical
run thus yields 50 measurements of the energy distri-
bution and the microcanonical magnetization moments.
Combining simulations at different temperatures we can
reweight the block averages of the P and use (4) with
the corresponding microcanonical block averages of the
mP¥ to obtain about 50 estimates of, e.g., (u) and (m*).
These serve to calculate error bars.

In particular, we can in this way calculate error bars
on the canonical averages (u) and (m*) for the N, n, and
T at which we performed the simulation. These error
bars are typically within 10% of the error bars obtained
from the direct averages. This indicates that the block
averages of P and (mFk),,. are quasi-independent.

To calculate the susceptibility x,

L3 2 2
x = 1z ((m?) = (m)?) )

(L is the linear length of the system, kp is Boltzmann’s
constant) or the Binder parameter ug,

_ (m?)
Ug = 1 3<m2>2 ) (6)
we first calculate the average moments (m*) from all the
data and then calculate x or u4 from (5) and (6), respec-
tively. Alternatively, one could use block averages of the
mF to calculate block averages for x and u4 and subse-
quently average over the blocks. However, the expecta-
tion value for a block average of x and u4 depends on the
size of the blocks (this holds in principle for all nonlin-
ear combinations of the (m*)). This effect is observable
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and leads, e.g., to a systematically decreasing estimate
of u4 with increasing block size. One has to extrapolate
to infinite block size to account for this systematic bias.
We checked that within error bars this extrapolation is
identical to the use of (5) and (6) with the (m*) obtained
from averages over entire runs. To obtain error bars on x
and u4 we did use the block averages of these quantities
to calculate standard deviations.

The random number generator (RNG) we used is the
subtract with carry (SWC) generator [18,19]. Since this
RNG was found to perform poorly in a simulation of
the two-dimensional (2D) Ising model with the Wolff al-
gorithm [19] we tested it against a RNG which is be-
lieved to be superior [20,21]. The latter is based on two
binary feedback shift registers, one of length 9689, the
other of length 127, which are combined by means of the
exclusive-or operation [20]. We repeated two runs with
this RNG. As starting configurations we used the last
configuration of the corresponding run with the SWC
RNG. The results are listed in Table IV, which shows
good agreement between the RNG’s.

Simulations of systems smaller than 1372 particles ran
on a Cray YMP-EL. Most of the N = 1372 systems and
all of the N = 2916 systems ran on a Cray C-98.

III. RESULTS FOR THE DENSITY n = 0.6

We first give the results for the density n = 0.6 for
which we have the largest range of system sizes. The pa-
rameters of the simulations we carried out at this density
are listed in Table II together with results for the aver-
age energy per particle and the average magnetization
moments.

Figure 1 shows the Binder parameter u4 as a function
of T for the five system sizes. The intersection points of
the curves give an estimate of the critical temperature
T. [22]. The curves (and hence the intersection points)
are obtained by applying the multihistogram reweighting
technique to the energy distributions P that are averaged
over an entire run. Error bars on the intersection points
are obtained by reweighting the block averages of P and
using the corresponding block averages (m*),,.. This
gives, e.g., for N = 108, 60 curves of u4 versus T. For
N = 256 it gives 50 such curves since 50 is the minimum
number of block averages at each temperature (see Table
II). Intersecting the nth curve for N = 108 with the nth
curve for N = 256 we obtain 50 intersection points. From

TABLE IV. Comparison of two random number generators (RNG’s). SWC denotes the subtract
with carry RNG; CSR denotes the RNG with combined shift registers; n denotes the density of the
system. The density of the first two systems is n = 256/(7.15%) which is slightly larger than 0.7.
The meaning of the other columns is identical to the corresponding columns in Tables I-III. The

third row is also listed in Table II.

RNG n N T Ns (u) (m) (m?) (m?) (m?)
10°

SWC 0.7004 256 3.8 1.12 -1.127(2) 0.3440(6) 0.1251(4) 0.0474(2) 0.0186(1)

CSR 0.7004 256 3.8 0.8 -1.126(3) 0.3439(8) 0.1250(5) 0.0473(3) 0.0185(1)

SWC 0.6 1372 3.16 1.12 -0.898(2) 0.2487(6) 0.0654(3) 0.0179(1) 0.00508(4)

CSR 0.6 1372 3.16 0.96 -0.898(2) 0.2486(7) 0.0654(3) 0.0179(1) 0.00509(4)
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FIG. 1. The Binder parameter u4 versus the temperature 7'
for the five system sizes at the density n = 0.6. The dots are
averages over individual simulations, the curves result from
histogram reweighting. Error bars on the dots are omitted
when smaller than the symbol size. The curves become flatter
for smaller system sizes.

these we calculate the error bar on the intersection point
between the N = 108 and N = 256 curves in Fig. 1. The
procedure for the other intersection points is identical.
F'SS predicts that the intersection point T;(b) between
the curve for a system of N particles and the curve for
N’ particles [with b = (N'/N)Y/3, N’ > N] equals T,
plus a correction: T;(b) = T. + ¢/Inb with ¢ a con-
stant [12,13,22]. A linear least squares fit [23] of the
intersection points with N = 108 to this relation yields
T. = 3.153(3), ¢ = (—1 £ 2) x 1073, with a goodness
of fit @ = 0.84 [12,13]. Error bars on fitted parame-
ters are the square roots of the variances of those pa-
rameters. The variances are returned by the fit rou-
tine [23]. The same fit to the intersection points with
N = 256 yields T, = 3.151(3), ¢ = (5 + 19) x 10~%, with
Q = 0.69. A fit of the value of the Binder parameter at

Inm,

1.6 2.0 24 2.8
InL

FIG. 2. In-ln plot of the magnetization at T., m., versus the
linear system size L. The squares are results for the five sys-
tem sizes at the density n = 0.6 and the estimate T. = 3.145.
Error bars are smaller than the symbol size. The line is the
straight line fit to the points.
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T

FIG. 3. The susceptibility x versus the temperature T for
the five system sizes at the density n = 0.6. The squares are
averages over individual simulations, the curves result from
histogram reweighting. Error bars on the squares are omit-
ted when smaller than the symbol size. The susceptibility
increases with increasing system size. Histogram reweighting
for the largest systems down to 7' = 3 is evidently unreliable,
e.g., the crossing of the curves for N = 1372 and N = 2916 is
an artifact of reweighting too far away from the temperatures
at which the simulations were carried out.

the intersection point us; to u4;(b) = uac + ¢/Inb yields
uge = 0.6081(8), ¢ = (2 £5) x 1074, Q@ = 0.96 for inter-
sections with the N = 108 curve. The N = 256 curve
yields u4 = 0.608(1), ¢ = (—1+6) x 107%, Q = 0.80.
FSS predicts the magnetization at T;, m., to vary with
the linear system size L as m. o< L™P/¥ with § and v
the magnetization and correlation length exponents, re-
spectively [22]. A straight line fit of Inm,. versus InL
is best (Q = 0.88) for an estimate of T, = 3.145 and
gives 3/v = 0.5546(17). For an estimate T. = 3.14 we
find 8/v = 0.5402(16), Q = 0.14, while the estimate

2 T T T

o

Iny,

7

-1 L . .
1.6 2.0 2.4 2.8

InL

FIG. 4. In-In plot of the maxima of the susceptibility xm
versus the linear system size L. The squares denote the max-
ima of the five curves in Fig. 3. Error bars are smaller than
the symbol size. The line is the straight line fit to the squares.
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T. = 3.15 yields g/v = 0.5690(17) with Q@ = 0.32; see
Fig. 2. Straight line fits of the higher moments (m*)
at T. (k = 2,3,4) all yield best fits for T, = 3.145 and
identical values for G/v.

The susceptibility x (5) has, as a function of T', a max-
imum x,,; see Fig. 3. According to FSS x,, o« LY/*
with v/v = 3 — 2(8/v) and v the susceptibility expo-
nent [22]. A straight line fit of lnx,, versus In L yields
v/v = 1.856(9) with Q = 0.38; see Fig. 4. The ratio
v/v can also be estimated from x. = x(T.) for which
the same scaling as for x,, is predicted. Straight line fits
of Inx. versus In L are good fits (with @ > 0.6) for a
wide range of temperatures although with a systematic
variation in the resulting v/v. If we take T, in the range
3.145 < T, < 3.155 we estimate /v = 1.84(2). The ratio
Xe/Xm is according to FSS independent of L for L suf-
ficiently large [22]. Fitting this ratio for the five system
sizes to a constant ¢ we obtain a best fit ¢ = 0.953(1)
(Q = 0.38) for the estimate T, = 3.155. For the estimate
T, = 3.15 the fit worsens to @ = 0.03 [c = 0.946(1)] while
for T, = 3.16 we have Q = 0.11 [c = 0.958(1)].

The ratio 1/v can, e.g., be obtained from the minima
in 9(m) /0T as a function of T. The derivative was cal-
culated from the energy-magnetization correlation [24]:

om)y N
o s (mu) — (m ). ™

We checked that this way of obtaining 8(m)/0T gives
the same results as taking finite differences Am/AT for
AT small enough.

The minima are predicted to scale as (8(m) /0T ) min
L(-A)/v However, the curve of In(&{m)/OT ) min versus
In L shows a pronounced curvature leading to the poor
value @ = 0.01 for a straight line fit. Limiting the fit to
the N = 500, 1372, and 2916 systems yields @ = 0.58
and (1 — B)/v = 0.86(3); see Fig. 5. With 3/v = 0.56(2)
we obtain 1/v = 1.42(3). The magnetization derivative
8(m) /0T at T, should scale in the same fashion but yields
once more curved lines on a In-ln plot for all reasonable
estimates of T.. Even if we limit the fit to the three
largest systems we retain rather poor fits: Q@ = 0.21-
0.24 with (1 — B)/v = 0.86(2) for all estimates of T, in
between 3.13 and 3.16. If we inspect the slope dus/0T
at T, which FSS predicts to scale as (Qus/8T)r, < L*/¥,
we find good straight line fits of In(8u4/8T ), versus In L
for a large range of choices for T,. If we take T, = 3.15
we estimate 1/v = 1.40(3).
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FIG. 5. In-In plot of the minima of 8(m)/8T versus the
linear system size L. The squares are for the five systems at
the density n = 0.6. Error bars are omitted when smaller
than the symbol size. The line is the straight line fit to the
data for the largest three system sizes.

Our final estimates are T, = 3.150(5), u4. = 0.6081(8),
B/v = 0.56(2), v/v = 1.85(1), and 1/v = 1.41(3) for the
density n = 0.6. They are summarized in Table V which
also gives the values for the lattice Heisenberg model.
They turn out to be slightly different. The data-collapse
plots in Fig. 6 and Fig. 7 emphasize that the simulations
favor for the Heisenberg fluid our estimate of v/v above
the value for the lattice model.

We tried whether our data are compatible with the
lattice Heisenberg exponents and the inclusion of cor-
rections to FSS. We fitted xm to xm(L) = e LYY +
coL7¥+t0/¥) with /v fixed at the lattice Heisenberg
value 1.975 [12-14]. If we fix y at values 0 < y < 0.1 the
fit routine gives reasonable fits (Q = 0.51 for y = 0.01 de-
creasing to Q = 0.43 for y = 0.1) but it gives ¢; < 0 which
is unphysical. For y = 0.2 we obtain ¢; = 0.0066(9),
ce = 0.016(1), @ = 0.35. The goodness of fit de-
creases further with increasing y with, e.g., @ = 0.21
for y = 0.4. Hence the assumption of lattice Heisen-
berg critical behavior with corrections to scaling does
not fit the data better. We recall that if we fit x» (L)
to xm(L) = ¢1 L7/” with ¢; and /v free parameters we
obtain ¢; = 0.0222(4), v/v = 1.856(9), Q = 0.38.

TABLE V. Summary of results. n is the density; Tc the critical temperature; u4. the critical
value of the Binder parameter; 3/v, v/v, and 1/v are exponent ratios. The last row gives the
results for the lattice Heisenberg model from Refs. [12-14]. The critical temperature in this row is
for the simple cubic lattice [T. = 2.0542(2) for the bcc lattice [14]].

n T. Use B/v /v 1/v
0.4 1.940(5) 0.6130(8) 0.55(2) 1.86(3) 1.35(5)
0.6 3.150(5) 0.6081(8) 0.56(2) 1.85(1) 1.41(3)
0.7 3.79(1) 0.605(2) 0.55(2) 1.84(3) 1.42(3)
lattice 1.44293(8) 0.6217(8) 0.514(1) 1.973(2) 1.421(5)
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FIG. 6. Data collapse plot for the susceptibilities of Fig. 3.
The collapse was carried out with our estimates 7. = 3.15,
v/v =1.85, and 1/v = 1.41.

IV. RESULTS FOR THE DENSITIES n = 0.4 AND
n = 0.7

The analysis for n = 0.4 and n = 0.7 is similar al-
though somewhat less convincing because of the absence
ofan N = 2916 system. We first discuss the case n = 0.4.

A.n=04

The fit of the intersection points of the Binder param-
eter yields T, = 1.940(2), ¢ = (9 £ 13) x 107%, @ =
0.51 for the critical temperature and w4, = 0.6130(8),
c=(—-2+4) x107%, Q = 0.62 for the critical Binder
parameter. These data are for the intersection with the
N = 108 curve. We only have two systems larger than the
N = 256 system and therefore we have too few intersec-
tion points (namely, two) to carry out a fit. Nevertheless,

0.024 T T T T

0.020 4

0.016

T
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T
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0'004 d 1 1 1 1
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FIG. 7. As Fig. 6 but with the collapse carried out with
T. = 3.15 and the lattice Heisenberg exponents v/v = 1.973
and 1/v = 1.421. The curves are shifted downwards with
increasing system size: the top curve is for the N = 108
system, the bottom curve for N = 2916.

the two intersection points [T; = 1.953(3), us; = 0.612(1)
for N = 500 and T; = 1.940(1), u4; = 0.6130(5) for
N = 1372] are in good agreement with the estimates of
T. and uy,.

Straight line fits of Inm, versus ln L yield best results
for the estimate of T, = 1.94: Q = 0.58 with /v =
0.5567(18). Putting T. = 1.945 gives 8/v = 0.5741(19),
Q = 0.02; T, = 1.935 gives 8/v = 0.5396(18), Q =
0.42; while T, = 1.93 gives 8/v = 0.5230(18), Q = 0.01.
Straight line fits of the higher moments In{m*) versus
In L give identical results.

The maxima X,, of the susceptibility yield v/v =
1.880(8) with a goodness of the straight line fit Q@ = 0.42.
The susceptibilities at T¢, x., give reasonable to excellent
straight line fits for a broad range of estimates of T,. If
we estimate T, in the range 1.935 < T, < 1.945 we obtain
v/v = 1.86(3). The fit of the susceptibility ratio x./xm
to a system-size independent constant ¢ gives a good fit
for T, = 1.945 [Q = 0.65, ¢ = 0.937(1)] and dramatically
worse fits for T, = 1.94 [Q = 0.02, ¢ = 0.928(1)] and
T, = 1.95 [Q = 0.01,c = 0.945(1)].

A straight line fit of In(8(m) /9T )min versus In L yields
(1 —pB)/v = 0.81(1) with Q@ = 0.36. As for the density
n = 0.6 in Fig. 5, the points for this density display
some curvature as well. Omitting the point for the N =
108 system from the fit gives (1 — 3)/v = 0.82(2), Q =
0.78. If we increase the error bar to 0.03 in anticipation
of a systematic bias due to the curvature and combine
(1 = B)/v = 0.82(3) with the estimate 8/v = 0.55(2) we
obtain 1/v = 1.37(4).

Similarly, straight line fits of In 8(m})/8T at T, versus
In L are poor (Q < 0.05) for all reasonable estimates of T
due to a curvature in the data. If we limit the fit to the
N = 256, 500, and 1372 systems we obtain (1 — 3)/v =
0.812(14), Q = 0.36 for T, = 1.93; (1—3)/v = 0.827(13),
Q =0.49 for T. = 1.94; (1 — B)/v = 0.828(14), Q = 0.45
for T, = 1.95.

The data for (Ous/O0T)r, give good fits for very low
estimates of T, (e.g., @ = 0.63 for T, = 1.93, Q = 0.87
for T, = 1.92) but a rather poor Q = 0.14 for T, = 1.94.
If we limit the fit to the largest three system sizes we
obtain 1/v = 1.33(3) with Q = 0.73.

Combining these results we finally estimate T, =
1.940(5), uqc = 0.6130(8), B/v = 0.55(2), v/v = 1.86(3),
and 1/v = 1.35(5) for n = 0.4.

B. n =0.7

The situation for n = 0.7 is somewhat more worrisome.
In general, the various straight line fits have much lower
Q@ values than the corresponding fits at n = 0.4 and n =
0.6 because of an increased scatter of the data points.

This is already borne out by the analysis of the inter-
sections of the Binder parameters. The fit of the temper-
atures T;(b) at the intersection point yields 7. = 3.791(3),
c=(3+2)x 1073, @ = 0.09 for the intersections with
the N = 108 curve. Figure 8 shows the intersection
points and the fit. It demonstrates that the situation
is not dissimilar to the situation for n = 0.4 and n = 0.6,
with comparable error bars on the T; and a comparable



598 M. J. P. NIUJMEIJER AND J. J. WEIS 53

3.810 . ;
3.805 | )
“( ////
& 3.800 | _— .
-
//
3.795 /i?/ T |
|
1
3.790 : ;
1 2 3 4

(In b)’I

FIG. 8. Intersection point temperatures T; versus 1/Inb.
The intersections are between the curve for N = 108 and the
curves for larger systems; b = (N/108)1/3. The data are for
the density n = 0.7. The line is the straight line fit to the
four intersection points.

slope ¢ = (3 &+ 2) x 1073. However, whereas the inter-
section temperatures line up at n = 0.4 and n = 0.6 to
give a credible straight line fit, they fail to do so at this
density. To a lesser degree, this concern holds also for
the fit of the Binder parameters u4; at the intersection
points. The goodness of fit is @ = 0.30 while the fit
gives uq. = 0.6056(7), ¢ = (—4 +4) x 10~%. The inter-
section points with the N = 256 curve show the same
deficiency. They give T, = 3.797(5), ¢ = (—2+2) x 1073,
Q@ = 0.03 for the critical temperature and u4. = 0.605(1),
c=(5+5)x107%, Q = 0.10 for the critical Binder pa-
rameter.

For the critical magnetization m, we find the best fit
for T, = 3.78 with 8/v = 0.547(2), Q = 0.22. Fits
for T, = 3.77 [B/v = 0.527(2), Q@ = 0.06] and T, =
3.79 [B/v = 0.568(2), Q = 0.009] are significantly worse.
Figure 9 shows that the very moderate Q value for 7, =
3.78 is not due to a curvature in the data points but to the
scatter of the points around the fit (the scatter is almost
not noticeable on the scale of Fig. 9). In contrast, the
estimates T, = 3.77 and T, = 3.79 lead to a curvature in
the data points.

The maxima of the susceptibility x,, give rise to a fit
with v/v = 1.843(7) and Q = 0.36. The susceptibilities
at T., X, lead to straight line fits with Q@ = 0.06-0.09
for all estimates of T, in the range 3.78 < T, < 3.82.
Figure 10 displays the data points and the fit for T, =
3.79 [this fit has v/v = 1.820(7), Q = 0.08]. It can be
seen that the poor @ value results from scatter of the
data points around the straight line fit rather than a
systematic curvature in the data.

The fit of the susceptibility ratio x./Xxm to a system-
size independent constant c¢ is best for T, = 3.8 [c =
0.9634(9), Q = 0.45] with ¢ = 0.955(1), Q = 2 x 10~° for
T. = 3.79 and ¢ = 0.9717(8), Q = 0.06 for T, = 3.81.

We have not attempted to analyze the minima of
8(m) /8T since these minima occur mainly at tempera-
tures outside the range of temperatures at which we per-
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FIG. 9. In-In plot of the magnetization at Tc, m., versus
the linear system size L. The squares are results for the five
system sizes at the density n = 0.7 and three estimates of
T.: T. = 3.77,3.78,3.79. At any L, m. decreases for a higher
estimate of T.. Error bars on the squares do not exceed the
symbol size. The line is the straight line fit to the points for
T. = 3.78. The points for the other estimates of T. show an
increased curvature.

formed simulations. For example, for N = 1372 we find
the minimum at T = 3.770(5) whereas simulations have
been performed at T = 3.8 and higher temperatures (see
Table III). This requires that we rely strongly on extrap-
olation by histogram reweighting. In view of the rapid
deterioration of the 8(m)/8T data under extrapolation
we found this an unreliable procedure.

The derivative (m) /0T at T. yields, as for n = 0.4
and n = 0.6, very poor straight line fits because of a
curvature in the data. Limiting the fit to the N = 500,
N = 729, and N = 1372 systems only we obtain (1 —
B)/v = 0.87(3), Q@ = 0.10 for T. = 3.79. The values of
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FIG. 10. ln-In plot of the susceptibility at T¢, x., versus
the linear system size L. The squares are for the estimate
T. = 3.79 and the density n = 0.7. Error bars do not exceed
the symbol size. The line is the straight line fit to the squares.
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(1—p)/v for T, = 3.78 and T, = 3.80 are identical within
error bars with @ = 0.08 and @ = 0.14, respectively. If
we combine this estimate of (1 — 3)/v with the estimate
B/v = 0.55(2) we obtain 1/v = 1.42(3).

The derivative of the Binder parameter duy /0T at T,
yields 1/v = 1.36(2), Q = 0.35 for T, = 3.78; 1/v =
1.41(2), Q@ = 0.27 for T, = 3.79; and 1/v = 1.44(2),
Q = 0.16 for T, = 3.80. It can again be checked that
these rather moderate values of Q) are caused by a scatter
in the data rather than by a curvature.

Hence we have seen that the data possess a scatter
that is not entirely justified by the error bars. One could
argue conversely that the error bars are underestimated
but we have no more direct evidence for this. It could also
be that the scatter is a systematic effect that becomes
stronger with increasing density for reasons that are not
well understood.

Or final estimates for the density n = 0.7 are T, =
3.79(1), uge = 0.605(2), B/v = 0.55(2), v/v = 1.84(3),
and 1/v = 1.42(3).

V. CONCLUSIONS

We have performed MC simulations of a Heisenberg
fluid which appear to be the most accurate simulations
of a magnetic fluid to date. Three points on the mag-
netic order-disorder line in the density range 0.4-0.7 are
obtained. These results provide tests for theoretical pre-
dictions based, e.g., on the mean spherical approximation
[3], hypernetted chain integral equation [1], mean field
theory [4,5], or modifications of the latter [5,25].

A meaningful comparison with the previous MC re-
sults of Lomba et al. is difficult due to the use of differ-
ent potential cutoffs: 4.50 in Ref. [1] compared to 2.50
in the present work. Figure 3 in Ref. [1] shows T, ~ 17
which in our units of temperature (which differ by a fac-
tor of 3) becomes T, ~ 5.7 for the density n = 0.7. This
is significantly larger than our estimate 7. = 3.79(1).
The increase of T, seems sensible since one expects that
a longer interaction range makes it easier for the spins
to order and hence yields a larger critical temperature.
In fact, an increase of 7, with an increasing interaction
range has been reported for various systems [26,27].

It is likely that the estimate of T, =~ 5.7 of Lomba et
al. is an underestimate. Namely, Table III shows that,
for our system with a cutoff 2.50, an estimate of T, as
the temperature at which (m) = 0.5 for a 500 particle
system yields a T, far below our estimate 7. = 3.79(1).

The improved quality of our simulations makes it pos-
sible to estimate critical exponents. An a priori guess is
that they are equal to the lattice Heisenberg exponents.
Fisher renormalization arguments [9] also predict them to
remain unchanged since the specific heat exponent a for
the lattice Heisenberg model is negative [12-14]. How-

ever, our simulations disagree with this prediction and
predict novel exponents, shown in Table V. It is possible
that these “exponents” are effective exponents for the
modest system sizes that we could study. In that case
the asymptotic FSS scaling region would be visible only
for larger systems. Nevertheless, it is encouraging that
our estimates for exponent ratios are the same for all
three densities. It is also encouraging that they satisfy
the exponent relation (28 + v)/v = d with the dimen-
sion d = 3. Besides exponents, our values for the critical
Binder parameter are markedly smaller than the value for
the lattice Heisenberg model. It is puzzling that, whereas
our estimates for n = 0.6 and n = 0.7 agree, the value for
n = 0.4 is in between those and the value for the lattice
Heisenberg model.

Absent from our study is an analysis of (u), the specific
heat cy, or higher moments of the energy distribution P
to determine o. Hyperscaling gives a/v = (2/v) —d =
—0.18(6) using the estimate 1/v = 1.41(3) for n = 0.6.
This small and negative value implies that the analytic
background in, e.g., (u) and cy will be important and
that therefore nonlinear three-parameter fits should be
used to extract a [12,13]. These fits are even difficult in
simulations of the lattice Heisenberg model [12,13] and
are not feasible in our case where at best we have five
different system sizes. We rather rely on the hyperscaling
result.

Besides a study of larger systems, other extensions of
this work could contribute to a better understanding of
the transition studied here. Our simulations focused en-
tirely on the magnetization as the order parameter that
describes the transition. Alternatively, one might ques-
tion whether in, e.g., a grand canonical ensemble the den-
sity has a singular behavior at the transition and can
serve as an order parameter as well. Such an investiga-
tion would also be a suitable means to locate the first-
order liquid-vapor line. Ultimately, one would like to
assess the interplay between density and magnetization
that was the subject of Refs. [1,5]. We aim to study the
density as order parameter in our next simulation.
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